Skip to main content

BREADTH FIRST SEARCH IN JAVA

BREADTH FIRST SEARCH IN JAVA:-


package com.problems.graph;

import java.awt.DisplayMode;
import java.util.Iterator;
import java.util.LinkedList;




public class BFSGraph {

 int maxsize;
 Vertex vertexlist[];
 int matrixlist[][];
 int vertexcount;
 @SuppressWarnings({ "rawtypes", "unused" })
 LinkedList queue;
 
 public BFSGraph()
 {
  maxsize=20;
  matrixlist=new int[maxsize][maxsize];
  vertexlist=new Vertex[maxsize];
  for(int i=0;i<maxsize;i++)
  {
   for(int j=0;j<maxsize;j++)
   {
    matrixlist[i][j]=0;
   }
  }
  queue= new LinkedList();
  
 }
 
 public void addVertex(char label)
 {
  vertexlist[vertexcount++]=new Vertex(label);
 }
 public void addEdge(int i,int j)
 {
  matrixlist[i][j]=1;
  matrixlist[j][i]=1;
 }
 
 public void displayVertex(int v)
 {
  System.out.println(vertexlist[v].label);
 }
 
 public int adjVertex(int v)
 {
  for(int i=0;i<maxsize;i++)
  {
   if(matrixlist[v][i]==1 && vertexlist[i].visited==false )
    return i;
  }
  return -1;
 }
 
 public void bfs()
 {
  System.out.println("in bfs");
  vertexlist[0].visited=true;
  displayVertex(0);
  queue.add(0);
  int v2;
  while(!queue.isEmpty())
  {
   int v1=(Integer) queue.remove();
   System.out.println("removed"+v1);
   while( (v2=adjVertex(v1))!=-1)
   {
   vertexlist[v2].visited=true;
   displayVertex(v2);
   queue.add(v2);
   }
  }
  for(int j=0;j<vertexcount;j++)
  {
   vertexlist[j].visited=false;
  }
 }
}

Comments

.

Popular posts from this blog

Driver program to perform operations in graph

Driver program to perform operations in graph:-



package com.problems.graph;publicclassGraphDriver{publicstaticvoidmain(String[] args){ BFSGraph g=new BFSGraph(); g.addVertex('A'); g.addVertex('B'); g.addVertex('C'); g.addVertex('D'); g.addVertex('E'); g.addVertex('F'); g.addVertex('G'); g.addVertex('H'); g.addEdge(0,1); g.addEdge(1,2); g.addEdge(1,7); g.addEdge(2,3); g.addEdge(2,4); g.addEdge(7,4); g.addEdge(4,5); g.addEdge(4,6); g.bfs();}}

Shortest Path from source to Vertex :- Dijkstra Algorithm

Shortest Path from source to Vertex :- Dijkstra Algorithm:-

Dijkstra Algorithms is an algorithm use to find the shortest path from source vertex to a given vertex.



package Graph;importjava.util.HashMap;abstractpublicclassDirectedGraph{ Vertex[] vertexlist=new Vertex[10]; HashMap<Character,HashMap<Character,Integer>> edgelist=new HashMap<>(); Vertex vertex;//count of vertex and edgestaticint vertexcount=0;int edgecount=0;/* * This function takes a label and insert in the vertex list as well as edge list since it is new vertex it will add * null to its adjoining vertices */intaddVertex(char label){ vertex=new Vertex(label); vertexlist[vertexcount]=vertex; System.out.println(vertexlist[vertexcount].label); edgelist.put(vertex.label,null); vertexcount++;return vertexcount;}intaddEdge(char label,char[] labels,int[] distances){ HashMap<Character,Integer> vertexlist=new HashMap<>();for(int i=0;i<labels.length;i++){ vertexlist.put(labels[i],…